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Abstract

Wild birds, particularly duck species, are the main reservoir of influenza A virus (IAV) in nature. However, knowledge of IAV
infection dynamics in the wild bird reservoir, and the development of immune responses, are essentially absent.
Importantly, a detailed understanding of how subtype diversity is generated and maintained is lacking. To address this,
18,679 samples from 7728 Mallard ducks captured between 2002 and 2009 at a single stopover site in Sweden were
screened for IAV infections, and the resulting 1081 virus isolates were analyzed for patterns of immunity. We found support
for development of homosubtypic hemagglutinin (HA) immunity during the peak of IAV infections in the fall. Moreover, re-
infections with the same HA subtype and related prevalent HA subtypes were uncommon, suggesting the development of
natural homosubtypic and heterosubtypic immunity (p-value = 0.02). Heterosubtypic immunity followed phylogenetic
relatedness of HA subtypes, both at the level of HA clades (p-value = 0.04) and the level of HA groups (p-value = 0.05). In
contrast, infection patterns did not support specific immunity for neuraminidase (NA) subtypes. For the H1 and H3 Clades,
heterosubtypic immunity showed a clear temporal pattern and we estimated within-clade immunity to last at least 30 days.
The strength and duration of heterosubtypic immunity has important implications for transmission dynamics of IAV in the
natural reservoir, where immune escape and disruptive selection may increase HA antigenic variation and explain IAV
subtype diversity.
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Introduction

Influenza A viruses (IAVs) infect many different avian and

mammalian hosts, including humans [1,2]. Among avian hosts,

the largest viral genetic diversity and highest prevalence are found

in species associated with wetlands [2]. Consequently, waterfowl,

particularly dabbling ducks but also other anatids, shorebirds and

gulls are considered as the main reservoirs for IAV [2]. Avian and

mammalian influenza, including seasonal and pandemic flu in

humans, are epidemiologically linked. The common view is that

the genetic variation occurring in the wild bird reservoir can be

seeded into other host species through de novo introductions, or

through reassortment processes in animals permissive to both

avian and mammalian-adapted viruses [3]. Given that the highest

levels of IAV genetic variation are found in wild waterfowl, it is

critical to understand evolution of the virus in these hosts.

Diversification and evolution of IAV genotypes is primarily

shaped via mutation and reassortment. At least in part, genotype

evolution may be driven by host responses to infection. The

hemagglutinin (HA) protein is the most abundant surface

glycoprotein on the IAV membrane, responsible for the attach-

ment and fusion of the virion with the host cell at the start of

infection. The epitopes that interact with antibodies are a major

target for the host immune response, hence HA genotypes should

be subjected to strong selection for immune escape [4,5].

Neuraminidase (NA) is the second most abundant membrane

protein which, during infection, cleaves the terminal sialic acid

residues from the newly formed virions and host cell receptors [1].

NA is also an important target for the host immune system, but

NA antibodies do not neutralize IAV [4]. Currently, 16 HA and 9

NA antigenic variants are recognized in birds, which can

theoretically be combined into 144 different HA/NA subtype

combinations [6]. The HA phylogeny reflects divergence that

occurred at different times represented as relatedness at higher-

order clustering of subtypes [6,7]. For example, the H1, H2, H5

and H6 subtypes belong to the H1 Clade, while H7, H10 and H15
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belong to the H7 Clade (Figure 1). At an even higher level, the

different clades can be classified into Group 1 (H11, H9 and H1

Clades) and Group 2 viruses (H3 and H7 Clades). Within HA

clades, subtypes have 62–68% amino acid similarities, while

subtypes from the two different HA groups have approximately

40% amino acid similarity.

Antagonistic co-evolution in a sympatric model of circulating

IAVs predicts that a change in the virus will modulate a change in

the host immune system and result in phylogenetic branching of

viruses genotypes into discrete antigenic IAV subtypes, with little

or non-overlapping antigenic spaces [8]. Thus, a central question

is to understand how changes in cross-protective HA or NA

immunity will translate into viral fitness effects and influence IAV

diversity and evolution [7].

To this end, most studies have relied on experimental infections

or vaccinations to study the development of immunity in birds [9–

12]. Generally, waterfowl are permissive to experimental infection

with low pathogenic avian influenza (LPAI). Naı̈ve ducks (usually

domestic variants of the Mallard Anas platyrhyncos) produce a

primary infection which lasts from 4 to 21 days [10,13,14].

Infection with a particular virus subtype induces homosubtypic

immunity, at least in the short-term [10,12], and is correlated with

specific antibody production [10,12,15]. Interestingly, there are

also indications that infection with one subtype could induce

partial, or complete, immunity to heterosubtypic re-infections

[11,12]. The degree of homo- and heterosubtypic immunity in re-

infections has strong relevance for IAV infection dynamics and

subtype evolution. So far, homo- and heterosubtypic immunity has

mainly been studied in the context of epidemiology of highly

pathogenic avian influenza (HPAI), in particular for the HPAI

H5N1 virus that has circulated among poultry since 1997 [16].

Ducks and geese pre-exposed to LPAI have reduced severity of

HPAI H5N1 induced symptoms, and lower mortality, after

experimental infection [9,17–19]. Furthermore, homosubtypic

HA vaccination of poultry against HPAI H5, HPAI H7 and LPAI

H9 is used for virus control and eradication in endemic areas and

is usually associated with good protection [20]. Vaccines

composed of a homologous HA and a heterologous NA to the

epizootic virus are a useful tool for control of HPAI in poultry

[21,22]. There is extensive interest in finding universal vaccines for

humans, and attempts to exploit heterosubtypic immunity (to

confer protection against several subtypes) are currently underway

[23–25]. Contrary to poultry or humans, there is only scant

information on IAV immunology and development of immune

responses in wild bird reservoirs [15,26,27]. This is unfortunate,

since the degree of individual and herd immunity will influence

disease dynamics by affecting the number of susceptible hosts, and

thus the strength of selection on IAV for immune escape.

Furthermore, if the degree of heterosubtypic immunity varies in

reciprocal strength between two subtypes it could select for one

subtype over the other, via inter-subtype competition over hosts

[28]. During recent years, large-scale sampling for IAV in wild

waterfowl populations have been conducted in several parts of the

world. However, most studies have dealt with prevalence/

seroprevalence at the population level, rather than at the

individual scale by repeated sampling of the same individuals. In

depth studies on development of immunity rely on repeated

sampling and construction of individual infection histories. While

some studies have been conducted using sentinel ducks [29,30] it is

preferable to use wild individuals displaying their full range of

natural behaviour. In the present study, we analyzed IAV subtype

infection patterns in a well-characterized wild migratory Mallard

population at an important stopover site in Southern Sweden

[31,32]. Through capture and recapture of birds during their fall

stopover, we acquired unique individual infection histories of wild

birds. These allowed us to test whether relatedness of HA or NA

subtypes at the first detected infection influenced the likelihood of

later re-infection with homo- and heterosubtypic virus subtypes.

Results

General description
From 2002 to 2009, a total of 7728 individual Mallards (4988

males, 2660 females, 80 unsexed) were captured and sampled at

Ottenby Bird Observatory, SE Sweden. Of the birds trapped,

3856 were juveniles, 2451 were adults (i.e. birds fledged the

previous year or earlier) and 1421 could not be certainly aged by

plumage criteria, and were left as unaged. Approximately one

Figure 1. DNA maximum-likelihood trees of the HA segment.
illustrating relationships between IAV hemagglutinin subtypes. Branch
lengths represent the number of nucleotide substitutions between
close HA subtypes (scale bars represent 10% of nucleotide substitu-
tions). Adapted from Fouchier et al. 2005.
doi:10.1371/journal.ppat.1003443.g001

Author Summary

Influenza A viruses (IAV) infect a range of hosts, with the
largest diversity being found in waterfowl, particularly
dabbling ducks. In these hosts, IAV causes only mild
disease, while viruses that infect other hosts, such as
poultry, horses or humans, can cause fatal infections. In
fact, all known pandemic flu viruses have contained gene
segments that originated in the wild bird reservoir. We
sampled a wild population of Mallards over eight seasons
and characterized infection histories in 7728 birds. For
hemagglutinin (HA) the subtype recoveries indicated that
once a Mallard has been infected, re-infection with the
same HA subtype is uncommon within the next month,
clearly indicating homosubtypic immunity. Moreover, we
found evidence for natural heterosubtypic immunity,
where phylogenetically related HA subtypes at clade and
group levels were less common in re-infections than
expected. On the contrary no specific patterns of immunity
was found for neuraminidase subtypes. IAVs exist in
numerous antigenic subtypes that co-circulate. The
strength of heterosubtypic immunity in natural infections
provides evidence that HA subtypes compete over hosts
and that immune escape may result in positive selection
for HA antigenic variation in the virus, and thus explain IAV
subtype diversity.

Cross-immunity to Influenza A Virus Infections
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third of the birds were retrapped at least once at Ottenby during

the same season (n = 2439), the maximum number of recapture

occasions was 61 for a single individual (range from 1–61 times in

different birds), giving a total of 18679 samples analyzed for IAV.

The average stopover time, measured as the difference between

first and last recapture in the fall, was 17.1 days (SD 0.5, years

2002–07). In total, 2451 samples were positive for IAV (13.1%

overall IAV prevalence), as determined by real-time reverse

transcriptase PCR assay (RRT-PCR). For RRT-PCR positive

birds, the maximum number of infection positive days in a single

individual within the season was 13 occasions (range of 1–13

amongst individuals). RRT-PCR positive samples were propagat-

ed in hen eggs, yielding a total of 1081 virus isolates (44% isolation

success). The maximum number of isolates from a single indivi-

dual was 9. Overall, 10.6% of the Mallards (822 individuals) had at

least one infection where an isolate was retrieved. In 98 cases,

these birds had the same HA/NA subtypes in two or more virus

isolates. The 95% confidence interval estimation of the minimal

duration of virus shedding was [2.66–3.36] days. The minimal

duration of shedding, in days, was modelled using generalized

linear models and the significance of the explanatory variables was

assessed using likelihood ratio tests (LRT). That did not vary across

months (July to December; df = 5; LRT p-value = 0.88), years

(2002–09; df = 7; LRT p-value = 0.99), HA subtypes (H1–H8,

H10–H12; df = 10; LRT p-value = 0.99) or as a function of

number of previous detected infections (1 to 3 infections; df = 1;

LRT p-value = 0.97). Shedding was intermittent or discontinuous

in 11 individuals, similar to previous studies [12,33].

HA subtypes in consecutive infections
In 104 individuals, at least two separate infections were detected

within a fall season – the data from these individuals were used to

determine patterns of homosubtypic and heterosubtypic immunity

(examples in Figure 2). The time between successful isolation of

two different viruses (i.e. different subtypes or independent

infection events) varied from 1–49 days in different individuals,

with a mean of 8.38 days and a median of 3 days (n transi-

tions = 142, SD 9.69; Figure S1). These data allowed the testing of

two hypotheses: (1) that an infection with a specific HA or NA

subtype would confer protection against future homosubtypic

infections, and (2) that an infection with a specific HA or NA

subtype would confer protection against future heterosubtypic

infections of phylogenetically closely related subtypes (for example,

infection with a Clade 1 subtype would protect against infection

with other Clade 1 subtypes).

Using the whole dataset (Table S1) and disregarding time

between detected infections, we tested the null hypothesis that the

subtypes of successive virus detections were independent. In this

case, H0 could not be rejected (11*12 contingency table (hereafter

CT), n individuals = 104, n transitions = 142, median of the Monte

Carlo Fisher’s exact test p-value over randomly generated sub-

samples where each individual contributed with a single detection

pair = 0.58 (hereafter median MC Fisher’s p-value, see Method

section for details)) suggesting independence between successive

infections in single individuals. The independence hypothesis

could also not be rejected when contingency tables were built

using HA relatedness at group or clade levels while still ignoring

time between infections (2*2 CT for groups, 5*5 CT for clades,

sample size as above, median Fisher exact p-value over randomly

generated independent subsamples = 0.11 (hereafter median Fish-

er’s p-value) and median MC Fisher exact p-value = 0.56 for

groups and for clades, respectively; Tables S2 and S3).

To refine the analyses, we introduced time between infections

as a variable categorized as either short lag (#6 days between

isolation) or long lag ($7 days between isolation). This cut-off was

based on the estimated duration of shedding from natural

infections [31] and experimental infections [14] and was used in

order to disentangle new infections from old infections. This also

accounted for the time lag between first contact with the virus and

the development of immune responses, thus we expected to detect

immunological resistance patterns in the long lag category as a

result of induced protective immunity. For short lag pairs,

independence between HA subtype at first detection and at

second detection could not be rejected (11*12 CT, n individu-

als = 70, n transitions = 84, median MC Fisher’s p-value = 0.18;

Table S4). The independence hypothesis could also not be rejected

for short lag detection pairs when contingency tables were built

using HA relatedness at group or clade levels (2*2 CT for groups,

5*5 CT for clades, sample size as above, median Fisher’s p-

value = 0.24 and 0.45 for groups and clades, respectively; Tables

S5 and S6). For long lag pairs, the independence hypothesis test

was close to significance at the subtype level (11*12 CT, n

individuals = 44, n transitions = 58, median MC Fisher’s p-

value = 0.06; Table S7 and S8), non-significant at the clade level

(5*4 CT, sample size as above, median Fisher’s p-value = 0.28;

Table S9) and close to significance at the group level (2*2 CT,

sample size as above, median Fisher’s p-value = 0.07; Table S9). It

has to be noted that the independence tests presented above are

quite conservative with regards to the development of immunity,

because they consider any type of departure from independence as

the alternative hypothesis, whereas immunity should result in

specific patterns of departure from independence where re-

infections by a virus of the same subtype or by a phylogenetically

related subtype are observed less frequently than expected under

the null independence hypothesis. Indeed, examining the

standardized Pearson’s residuals (rij) in the long lag contingency

tables at the subtype, clade and group levels revealed such patterns

of departure from independence. At the subtype level (Table S8),

negative mean standardized Pearson’s residuals were observed for

Figure 2. Examples of consecutive IAV infections in seven
individuals. The subtypes of detected viruses, as well as time between
detections, are given.
doi:10.1371/journal.ppat.1003443.g002

Cross-immunity to Influenza A Virus Infections
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cells corresponding to same subtype (mean rij = 20.55) or related

subtypes from the same clade (mean rij = 20.49), and positive

mean residuals for cells corresponding to unrelated subtype pairs

(mean rij = 0.15). At the clade level the residuals were negative for

re-infections with the same clade (mean rij = 21.23) and positive

for re-infections from a different clade (mean rij = 0.28), and similar

patterns were seen also at the HA group level (mean ri = 21.99 for

same group cells and mean rij = 1.99 for different groups cells;

Table S9).

Moreover, some subtypes included in the contingency tables

were rarely detected in the wild population of Mallards despite

extensive sampling and are thus likely to circulate only intermit-

tently in the study population. A consequence of intermittent

circulation could be that during some periods, or years of the

study, the exposure of mallards to the rare subtypes would be null,

and thus infection by these subtypes impossible. The observed

contingency table frequency patterns could then be partly driven

by the presence/absence of the rarer subtypes in the pool of

circulating IAV subtypes, and not only by development of immune

responses against certain subtypes. In order to address this issue,

we run the analyses with only the HA subtypes that were detected

all years in the sampled population and included them as 7

discrete categories (H1, H2, H3, H4, H5, H6 and H11) in the test

of independence for the long lag infection pairs (Figure 3). These

common subtypes were frequently isolated and likely co-circulated

every year in the study population. Thus, a deficiency of re-infections

with specific subtypes on the long lag can therefore be inter-

preted as a consequence of immunity. There was a significant

dependence between HA subtype of first infection and re-

infections in the long lag for the common subtypes (7*7 CT, n

individuals = 32, n transitions = 41, median MC Fisher’s p-

value = 0.02; Figures 3 and S2, Table S8). We examined the

specific patterns of re-infection and direction of the departure

from independence for the common subtypes using standardized

Pearson’s residuals (Figure 3). We expected low frequencies for

homosubtypic HA re-infections (diagonal cells in the contingen-

cy table for all transitions, Figure 3), and indeed the observed

frequencies of re-infections with the same HA subtype were

lower than expected for all HA variants (mean rij = 20.64),

except for H3. Two homosubtypic re-infections were detected:

H3N4 initial infection, followed by a H3N2 re-infection, and

H4N6 as both initial and re-infection subtype. The cases of

homosubtypic re-infections occurred 47 and 49 days after the

first detected infection, respectively. In both cases, the HAs from

the primary and the secondary infections showed a 98%

sequence similarity (GenBank accession number: KC342608 and

KC342612, KC342624 and KC342628). A striking finding was

that phylogenetically related subtypes (i.e. H1, H2, H5 and H6

in the H1 Clade) did not cause re-infections in individuals

(mean rij = 20.50) even if these subtypes co-circulated in the

population. Conversely, less related subtypes (such as H4 and

H2, H4 and H5 or H4 and H6), caused re-infection more often

than expected (mean rij = 0.40; Figure 3 and Table S8).

In addition, consecutive infections with a HA subtype that

belonged to the same phylogenetic clade were generally less

frequent than expected (mean rij = 22.20), whereas consecutive

infections with distinct HA subtypes that belonged to separate

clades were more frequent than expected (mean rij = 1.10) (3*3

CT, n individuals = 32, n transitions = 41, median Fisher’s p-

value = 0.04; Table 1 and S9, Figure S2B). Similar effects were

seen at the HA group level (2*2 CT, sample size as above, median

Fisher’s p-value = 0.05; Table 2 and S9, Figure S2B). These

patterns suggest that phylogenetically related HA subtypes induce

a significant level of heterosubtypic immunity.

As noted above, the restriction to the 7 most common HA

subtypes was based on epidemiological information from the study

population. However, in order to determine the extent of the

observed dependency we performed additional analyses where we

started with the three most common subtypes (as the 2 most

common generated a 2*1 table) and then subsequently included

subtypes in the analyses based on the frequency of detection in the

population (Table S8). There was a consistent pattern for long lag

re-infection pairs with significant dependency (i.e. p-value #0.05)

observed in 5 out of the 9 possible tables (Table S8). Furthermore,

in the 4 remaining tables, the p-value was close to significant in

three tables (i.e. p-value #0.10) when including 4, 6 or all subtypes

in the analyses, but not in the table with only three subtypes

included. In addition, the mean of the standardized Pearson’s

residuals were generally negative for cells corresponding to

infections by same subtype, or for cells corresponding to infections

by subtypes belonging to the same clade (Table S8). A similar

analysis at the level of clades showed a significant dependence for

the 2 and 3 most common clades (which represented the 7 most

prevalent subtypes found every year), but non-significant depar-

tures from independence when rarer clades were included,

although the patterns of the residuals were still compatible with

the immunity hypothesis (Table S9).

When similar full explorations were performed either for the

whole dataset independently of the time between infections, or for

the short lag only, the results showed no departure from indepen-

dence, or any specific patterns between infections at the level of

subtype (Tables S10 and S11) or clade (Tables S12 and S13).

Temporal variation of HA clades detection probabilities
The time component of the heterosubtypic immunity within the

specific HA clades was investigated by modeling the detection

probabilities of viruses belonging to the same clade as a function of

time since previous detected infection (specifically based on

individual infection histories). For this analysis, all HA records of

infections from recaptured Mallards (n individuals = 585) were

considered. For most HA clades, the model with strongest support

included the effect of previous infection history (both for viruses

belonging to the same and different clades), as well as year and

seasonal effects (Table S14). Seasonal variation of relative

prevalence for the H3 Clade showed that these viruses were

dominant at the beginning of the fall, while viruses from the H1

Clade were dominant towards the end of the season (Figure S3).

For birds infected with either a H1 or a H3 Clade virus, the

probability of acquiring a new infection with a virus from the same

clade decreased as a function of time (Figure 4A and 4C). Initially,

the probability curves were higher than the probability of a naı̈ve

Mallard acquiring an infection from the same clade, but after

approximately 7 days when infections are cleared, the probability

curves dropped below the probability of a naı̈ve Mallard acquiring

an infection. This strongly suggests that the developed immune

responses induce protection. It should further be noted that this

effect lasted for at least 30 days (Figure 4A and 4C). Conversely,

the probability of infection with a virus belonging to a different

HA clade than that of the initial infection increased over time

(Figure 4B and 4D). This probability was initially low and

increased above that of a naı̈ve Mallard as time progressed, during

which immune responses against the clade causing the primary

infection were established (Figure 4B and 4D).

Similar patterns of variation in detection probabilities in relation

to previous infection history were evident in the H7, H9, and H11

Clades (Figure S4), despite the low prevalence rates of these

subtypes (Figure S5) compared to those of the H1 and H3 Clades

(Figure S3).

Cross-immunity to Influenza A Virus Infections
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NA subtypes in consecutive infections
Employing the same approach as described for the HA, we

explored the patterns of re-infections for the NA subtypes. In order

to determine patterns of re-infections for different NAs, We

constructed a contingency table with the most common NA

subtypes (N1, N2, N3 and N6; Table 3) similar to the analyses for

HA above. No departures from the hypothesis of non-restricted

transitions from primary to secondary infections with viruses of

different NA subtypes were observed, regardless of time between

infections (4*4 CT, n individuals = 48, n transitions = 61, median

Fisher’s p-value = 0.59). Furthermore, no effect was observed in

the short time lag (#6 days between isolation, 4*4 CT, n indivi-

duals = 35, n transitions = 40, median Fisher’s p-value = 0.57) or in

the long time lag ($7 days between isolation, 4*4 CT, n

individuals = 16, n transitions = 21, median Fisher’s p-value =

0.87), indicating that the NA subtypes of initial infection and re-

infection were independent.

No specific pattern on successive infections was found for NA

subtypes when performing a full exploration (whole dataset, short

and long lag) of the NA subtypes in detected infections, first

restricting the analysis to the 2 most common subtypes and then

subsequently including the less common subtypes in the contin-

gency tables as done for HA (Tables S15, S16, S17, S18, S19,

S20).

Discussion

Homosubtypic and heterosubtypic immunity
Here, we have examined the influence of immunity on the

likelihood of re-infections of homologous or heterologous HA and

NA subtypes. Individual immunity was commonly detected,

whereby we detected fewer re-infections with a particular subtype

than expected if re-infection was random with respect to viral

subtype. For re-infections with homologous subtypes, we found

evidence for homosubtypic immunity for the HA protein, but not

for the NA protein. This homosubtypic HA immunity was time

dependent, whereby it was not observed in cases where the time

between isolated viruses was short (1–6 days), but was evident

when there were at least 7 days between isolations when immune

Figure 3. Contingency table for HA re-infections with the IAV subtypes most frequently isolated. Rows represent the HA subtype in the
first detected infection and columns the HA from an infection retrieved $7 days later. The number in each box represents the number of cases,
together with standardized Pearson’s residuals in brackets. Red boxes show negative values and represent a deficiency of cases, blue boxes show
positive values and an overrepresentation of cases, and grey denote cases that do not depart from expected values. The dendrogram on top
illustrates HA subtype phylogenetic relatedness.
doi:10.1371/journal.ppat.1003443.g003

Table 1. Contingency table for HA re-infections with
common HA clades.

2nd infection

1st infection H1 Clade H3 Clade H11 Clade

H1 Clade 5 (23.28) 12 (0.82) 4 (2.8)

H3 Clade 11 (1.49) 2 (20.99) 2 (20.82)

H11 Clade 4 (2.39) 1 (20.18) 0 (22.35)

Rows represent the HA clade in the first detected infection and columns the HA
clade from an infection retrieved $7 days later (i.e. long lag). The number in
each cell represents the number of cases, the standardized Pearson’s residuals
are provided in brackets.
doi:10.1371/journal.ppat.1003443.t001

Table 2. Contingency table for HA re-infections with HA
groups.

2nd infection

1st infection Group 1 Group 2

Group 1 13 (21.99) 13 (1.99)

Group 2 13 (1.993) 2 (21.99)

Rows represent the HA group in the first detected infection and columns the
HA group from an infection retrieved $7 days later (i.e. long lag). The number in
each cell represents the number of cases, the standardized Pearson’s residuals
are provided in brackets.
doi:10.1371/journal.ppat.1003443.t002

Cross-immunity to Influenza A Virus Infections
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responses develop. Clearly, the time between detected infections is

a crucial parameter for establishing the likelihood that an isolated

virus is a new infection, or continued shedding of an already

established infection. Isolation of different subtypes from the same

bird within a period of less than 3 days likely represents a major

fraction of co-infections, rather than separate consecutive infec-

tions. Similarly, changes in either HA or NA subtype between

viruses isolated within a short period of time from the same bird

may signify a reassortment event.

Apart from homosubtypic immunity, we also found evidence for

heterosubtypic HA immunity in the wild population of Mallards.

The deficit of particular re-infections was evident when analyzing

the signs and values of the residuals from pair-wise comparisons in

contingency tables. With this approach, phylogenetically related

HA subtypes were less likely to be detected than expected,

indicating patterns of heterosubtypic immunity in the wild host

reservoir. For example, re-infections with the common HA

subtypes within the H1 Clade (H1, H2, H5 and H6) were rare

if the first detected subtype was an H5 virus. The patterns of HA

heterosubtypic immunity were most evident between subtypes

belonging to the same clade, but were still present in comparisons

between Group 1 (H1, H11 and H9 Clades) and Group 2 (H3 and

H7 Clades) viruses. The probability of re-infection of a virus within

Figure 4. IAV detection probability for H1 and H3 Clades as a function of time and previously detected infections. The x-axis
represents time in days since first detection of a virus. The y-axis depicts the probability of detection. Black continuous line represents the change
over time in probability (95% CI with dashed lines). The horizontal blue line is the probability of detection of an infection with a virus from a specific
clade for naı̈ve birds (95% CI with dashed lines). The distribution of data points is presented as rug plots along the x-axis. Detection probabilities for
H1 (A) and H3 (C) Clades for individuals that have previously experienced an infection with a virus from the same clade. Detection probabilities for H1
(B) and H3 (D) Clades for individuals that have previously experienced an infection with a virus from another clade.
doi:10.1371/journal.ppat.1003443.g004

Table 3. Contingency table for NA re-infections.

2nd infection

1st infection N1 N2 N3 N6

N1 1 5 1 6

N2 3 5 2 7

N3 1 4 4 3

N6 6 4 4 5

Rows show first infection and columns later infections.
doi:10.1371/journal.ppat.1003443.t003
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the same HA clade showed distinct temporal patterns, and

decreased below the probability estimated for a naı̈ve individual

within ,7 days. These patterns indicate that once an individual

has experienced an infection with a virus from a specific clade, the

probability of getting re-infected with a virus from the same clade

decrease over time. Individuals develop an immune response,

homosubtypic and heterosubtypic immunity, against viruses from

that clade and the detection probability remained lower than for

naı̈ve individuals up to a month. In contrast, the detection

probability of a virus from a specific clade for individuals that

experienced a previous infection with a virus from another clade

increased above the estimated probability for naı̈ve individuals, as

immune responses developed. Consequently these individuals are

more likely to be infected by a virus belonging to a different clade

than with a subtype from the same clade as the previous infection.

Despite low prevalence rates of H11, H7 and H9 Clades, the

modeled probabilities of re-infection showed similar shapes to

those of the most common subtypes.

Patterns of homosubtypic immunity have been observed in

experimental infection studies in both domestic and wild ducks

[10,12]. The duration of protection reported from such studies

seems to be comparable to the time span that was observed in this

study (at least 30 days). In fact, we only found two clear cases of

homosubtypic re-infections, occurring 47 and 49 days, respective-

ly, after the first detected infections. HI and neutralizing antibodies

have been detected after experimental infections, from 16 days

post infection and lasting only a few weeks [26]. In contrast, the

evidence for heterosubtypic immunity from experimental infection

studies is more variable. In a recent study, Mallards challenged

with a LPAI H5N2 virus 35 days after an initial challenge with

LPAI H7N7 virus showed fewer infections and less/lower

shedding compared to ducks that had not been pre-challenged

[12]. Similarly, Costa and colleagues have shown a reduction in

both the duration of shedding and the viral loads in heterosubtypic

re-infections (H5N26H3N8 and H3N86H5N2) compared to

primary infections [11]. Other studies have shown that pre-

challenge with heterosubtypic LPAI viruses can give some

protection against an otherwise lethal H5N1 HPAI virus infection

[9,17–19,34]. These experimental studies provide valuable insights

into the role of homo- and heterosubtypic immunity in IAV

infections, especially for circulation of HPAI H5N1, but are

limited to few birds and virus subtypes. Our study is based on

natural infections from a large sample of wild birds, in an

environment where many IAVs subtypes co-circulate and thus

presents the first evidence of heterosubtypic immunity in a

complex natural system.

In our study population, heterosubtypic immunity seems to

develop during the comparatively short period (average 3 weeks)

that the ducks stay in the study area. Even though trapping was

conducted every day, the infection histories of the birds were for

most cases incomplete at a daily level. Furthermore, although

isolation rates from samples collected at our site are high [35], still

only 44% of all PCR-positive samples yielded a virus isolate, which

together precluded detailed analyses of exact shedding times for

individual infections. If prior infection is related to a decrease in

the duration and intensity of future infections, those future

infections will be less likely to be detected. Given the generally

high prevalence at our site and short shedding times [31,32], re-

infections and co-infections [36,37] are certainly common in the

population. The prediction from our population-based investiga-

tion is that the number of potential co-infections will diminish as

the season progresses, due to a build-up of immunity to infecting

subtypes (both homo- and hetero-subtypic). Thus, the frequency of

reassortment will also be affected by the cross-protective immunity

landscape in individual hosts, and will vary during the season at

the population level. Sampling of duck populations on European

wintering grounds show high seroprevalence of antibodies, and

also cases of seroconversion in recaptured ducks [38,39], but

whether individuals develop long-term immunity to IAV is mostly

unknown, as repeated sampling over time is rare. The temporal

model for heterosubtypic immunity at the Ottenby stopover site

indicated a response lasting at least 30 days, which is similar to the

average time that birds stay in the area. Our results agree with

seroprevalence estimates from wintering grounds and experimen-

tal studies following the dynamics of antibodies [15] in suggesting

that heterosubtypic immunity apparently last longer and may be

boosted by secondary IAV contacts in natural systems.

The specific mechanism conferring protection to IAV, and the

respective roles of innate, humoral and cell-mediated immune

responses in Mallards, is poorly understood. Heterosubtypic

immunity in mice and humans is determined by cross-reactive

antibodies (against the HA stem region, NA, M2 and NP) and T

cells (CD4+ T helper cells and CD8+ cytotoxic cells) [4].

Furthermore, specific cell-mediated responses in the mucosal

tissues, the bronchus-associated lymphoid tissue, and in the gut-

associated lymphoid tissue can modulate the outcome of infections

[20]. In poultry, activity of cross-reactive CD8+ cytotoxic T cells

induced by a H9N2 infection have been shown to cause protection

to later HPAI H5N1 challenges [34,40]. Some studies have

reported highly conserved inter-subtype immunodominant epi-

topes that could explain cross-reactivity [41]. Similarly, the

‘‘broadly neutralizing antibodies’’ observed in humans and mice

confer cross-reactive activity and neutralize multiple IAVs

subtypes from Group 1 and 2 [42,43]. Nevertheless, individual

variation in immune responses can be expected, determined by

genetic predisposition of the host, previous infection history,

condition of the host and interactions with the environment.

Evolution of IAV: How can subtype diversity be
maintained locally and globally?

Circulation of multiple subtypes can be sustained when the host

population is large enough and will depend on the duration,

strength and extent of cross-protective immunity. The Mallard is

one of the key reservoir species for IAV [2] and is the most

abundant and widespread duck species in the Northern Hemis-

phere, with an estimated population of 4.5 million individuals in

Northwestern Europe [44]. Homo- and heterosubtypic immunity

in the Mallard is therefore likely to affect viral dynamics in this

system and affect year-round virus circulation in populations with

herd immunity lasting during winter and spring.

Some HA subtypes in birds seem to have evolved in an

allopatric context and show clear patterns of either geographic

isolation, for example the H15 subtype is only found in Australia

[45], or host isolation, in the case of H13 and H16 that seem

largely restricted to gulls and terns [6,46]. All other known avian

HA subtypes today occur in sympatry in most of the virus’

geographic range, even if there is a clear distinction between

Eurasian and American lineages. Whether distinct HA subtypes

evolved in allopatry and now occur in sympatry, or whether

delineation may be selected in a sympatric host population, is

unknown. These models are not exclusive and HA subtypes have

originated at different times, showing higher-order clustering [7].

Some subtypes, such as H13 and H16, appear to have diverged

much more recently [6,46]. Interestingly, a recent study identified

a novel IAV in bats from Guatemala [47], with genes, including a

putative H17 HA variant, that suggest that this virus constitutes a

new lineage, different from other known IAVs, clearly supporting

allopatric diversification.
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Immune pressure in the host population, in combination with

the high mutation rate of influenza virus (of the order of 1023

substitutions per site per year [48]), have generated antigenically

and phylogenetically distinct HA variants through antagonistic

selection. HA subtypes are highly divergent with limited inter-

subtype genetic similarities. For instance, the average amino acid

identity within a HA subtype is estimated at .92%, compared to

45.5% (or 38.5% at the HA1 domain) between HA subtypes [7].

Cross-reactivity in HI tests is sometimes observed at high HA

sequence similarities between H2 and H5, H7 and H15, or H4

and H14 [49], indicative of cross-protection between related

subtypes as observed in the current study. The NA gene has likely

evolved in a similar way to that of HA [7]. However, in the

analyses conducted here we did not detect any specific patterns of

NA transitions in re-infections. NA antibodies cannot directly

neutralize the virus infection, and NA antibodies appear to be less

important than those against HA to confer protection, but can

limit NA-activity and thereby reduce infection severity [4].

To conclude, we detected both homo- and heterosubtypic HA

immunity in naturally infected Mallards. This provides important

insights into IAV evolution in particular and the processes of

pathogen diversification in general. The degree of cross-immunity

will play an important role in determining the direction and

strength of selection on individual viral subtypes, and thus their

evolutionary trajectories. Future research should target mechani-

sms of IAV immunity in birds, and predictions on heterosubtypic

immunity should be assessed by rigorous infection experiments

and further studies conducted in natural populations.

Materials and Methods

Ethical statement
All handling of birds was performed by trained ornithologists

from Ottenby Bird Observatory. The sampling protocol was

approved by Linköping Animal Research Ethics Board (permit

numbers 8-06, 34-06, 80-07, 111-11, 112-11).

Sampling
Wild Mallards were caught in a live-duck trap at Ottenby Bird

Observatory, Sweden (56u129N 16u249E) during the ice-free

period of the year (March/April–December) from fall 2002 until

December 2009. The trap was emptied daily and all birds taken

inside a mobile field laboratory for ringing, measurements and

sampling. Samples for IAV detection were taken either by

swabbing the cloacae or collecting fresh faeces at the bottom of

single-use cardboard boxes. Samples were preserved in transport

media (Hanks balanced salt solution containing 0.5% lactalbu-

minm, 10% glycerol, 200 U/ml penicillin, 200 mg/ml streptomy-

cin, 100 U/ml polymyxin B sulfate, and 250 mg/ml gentamycin,

and 50 U/ml nystatin; Sigma) at 270uC. More details on trapp-

ing, sampling and storage can be found in previous publications

[32,50].

IAV detection, isolation and characterization
Infection status was assessed by different RRT-PCR assays

targeting the IAV matrix gene [32,51]. PCR-positive samples were

further tested by H5- and H7-specific RRT-PCRs, followed by

sequencing of the amplicon [52] to ensure that all viruses were

classified as LPAI before virus propagation. For isolation, specific

pathogen-free embryonated hens’ eggs were used according to

standard methods for IAV propagation [53]. The HA subtype of

virus isolates was characterized using a Hemagglutination Inhibi-

tion assay (HI), with antisera raised to all 16 determined HA variants.

The NA subtype was characterized by PCR and sequencing

[35,54]. The HA gene of some selected isolates was also se-

quenced. In these cases, a fragment of approximately 600 bp was

amplified using the primers HA-1134-F and Bm-NS-890 [55] and

sequenced using standard methods. The HA and NA sequences

were aligned and explored using BioEdit version 7.0.0 [56].

Duration of infection and different infections in re-
captured Mallards

Following a similar approach to a previous study [31], we

estimated the minimal duration of active viral shedding in infected

individuals. However, we only used data from typed isolates (HA

or HA/NA level depending on whether the NA had been success-

fully sequenced), and assessed the number of days between first

and last isolation of the same virus subtype in an individual. Shedd-

ing was intermittent in some individuals and for these we calcu-

lated the number of days between first and last isolation of the same

virus subtype when there was only one negative sampling day (nega-

tive in culture, or negative in the RRT-PCR) between isolations.

The number of days between isolations of a different subtype

(HA or HA/NA combination) or re-infection with the same sub-

type ($7 days between recovery of the same HA and thus clearly

representing different infections) was calculated. In cases of several

isolates from the same infection, the number of days was

calculated from the last day of detected virus shedding (isolate)

until the next subtype. Viruses of the same HA subtype isolated

from the same individual within a time period of 3 to 10 days (in

addition to two apparent homosubtypic re-infections) were sub-

jected to HA/NA sequencing to determine whether the infection

detected was caused by the same virus or by a different virus of the

same HA subtype (KC342592-KC342631). Pairs of HAs showed

high sequence identity and therefore some cases were not included

as transitions in the analyses since the same virus was detected.

When analyzing the NA sequences, we also found cases with high

sequence similarities, indicating intermittent or long shedding of

the same infection. However, for other individuals we detected a

different NA subtype between sampling occasions, indicating co-

infection events and/or isolation of reassorted viruses.

Virus diversity was high at the study site and during the

complete study period (2002–2009) 12 different HA subtypes were

detected: H4 (n isolates = 291), H1 (n isolates = 141), H11 (n

isolates = 118), H6 (n isolates = 105), H5 (n isolates = 99), H2 (n

isolates = 96), H3 (n isolates = 74), H10 (n isolates = 63), H7 (n

isolates = 41), H8 (n isolates = 19), H12 (n isolates = 14), H9 (n

isolates = 9). The 7 most frequent subtypes were recorded every

year, while the others occurred intermittently and more rarely. In

the analyses, subtypes were grouped in HA clades: H1 Clade (H1,

H2, H5, H6), H3 Clade (H3, H4), H11 Clade (H11), H7 Clade

(H7, H10), H8 Clade (H8, H9, H12); and HA groups: Group 1

(H1 Clade, H9 Clade, and H11 Clade) and Group 2 (H3 Clade

and H7 Clade). All NA subtypes (N1 to N9) were detected during

the study period, most subtypes were detected every year except

for N5 and N7 that were absent some years. NA subtypes could be

ordered in frequency: N6 (n isolates = 231), N2 (n isolates = 217),

N1 (n isolates = 125), N3 (n isolates = 116), N9 (n isolates = 80), N8

(n isolates = 54), N7 (n isolates = 41), N5 (n isolates = 35), N4 (n

isolates = 26). NA subtypes were grouped into clades and groups in

the analyses: N3 Clade (N2, N3), N7 Clade (N6, N7, N9), N4

Clade (N1, N4), N8 Clade (N5, N8); NA Group 1 (N4 Clade and

N8 Clade) and Group 2 (N3 Clade and N7 Clade).

Epidemiological and statistical analysis
All statistical tests and models were computed using the R

software [57].
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Minimum duration of shedding. Minimum duration of

shedding was modelled and estimated using generalized linear

models with the number of days between first and last isolation of

a same virus as the response variable, and month, year and HA

subtype as categorical explanatory variables. As the response varia-

ble was a count, the models were set up using a Poisson distribution

and a log link function. Statistical significance of the explanatory

variables was assessed using likelihood ratio tests (LRT). Estimations

of minimum shedding duration were derived from the model

including only statistically significant explanatory variables.

Dependency between consecutive infections. We con-

structed contingency tables with the HA or NA subtypes from

consecutive infections (rows for first infection and columns for later

infection), including consecutive isolation of different viruses or

isolations between negative samples (thus detections defined as

belonging to the same infection were not included). The consecu-

tive infections contingency tables were sparse with frequencies

being null in most cells and rarely exceeding five. This implied that

asymptotic approaches such as standard chi squared tests could

not be applied. Instead, for testing independence null hypotheses

we relied on exact inference methods for categorical data [58,59]

using the Fisher’s exact test implemented in the ‘‘fisher.test’’

function of R. For contingency tables of dimensions less than 6*6,

the p-value for the null hypothesis was determined using a network

algorithm developed by Mehta and Patel [60] that allows the full

enumeration of the contingency tables with margins similar to

those of the observed table and the computation of the probability

of each of these tables under the null hypothesis of independence.

With this approach, the exact p-value of the observed contingency

table (referred to as Fisher’s exact test in the result section) is

computed as the sum of the hypergeometric probabilities under

the null hypothesis of independence of the tables as likely as, or less

likely than the observed table. For contingency tables of dimen-

sions greater than 6*6, this algorithm was computationally intrac-

table. The p-value for the null hypothesis was then determined using

a Monte Carlo approach (option ‘‘simulate.p.value = TRUE’’ in

the R fisher.test function), where 10 000 contingency tables are

sampled in proportion to their hypergeometric probabilities from

the set of tables with margins similar to those of the observed

table. The p-value of the observed table (referred to as MC

Fisher’s test in the result section) is then computed as the propor-

tion of the sampled tables which hypergeometric probability is

lower or equal to that of the observed contingency table [58,59]

Moreover, because 20 individuals had more than two detected

infections, they contributed with more than one pair of infection

events to some contingency tables. In order not to violate the test

statistic assumption of independent statistical units, but still making

full use of the available data, we adhered to a re-sampling strategy,

based on 1000 contingency tables built using random subsamples

including only one pair of infection events per individual (based on

unique ring numbers of birds). The median p-value over these

subsamples was used for assessing the probability of incorrectly

rejecting the independence null hypothesis. The specific patterns

of departure from independence in the tables that included all

pairs of infections (even multiple pairs of infections from single

individuals), was examined using standardized Pearson’s residuals

rij. For the cell at intersection of line i and column j:

rij~
Oij{Eijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eij(1{pi)(1{pj)
p

where Oij is the observed cell frequency, Eij is the expected cell

frequency under the independence hypothesis, pi is the marginal

relative frequency for row i and pj is the marginal relative

frequency for column j. Positive residuals reflect an excess of

observed over expected cases under the assumption that t subtype

of the second infection is independent from the subtype of the first

infection. Conversely, negative residuals reflected a deficit of

observed cases as compared to the expected cases.

We fully explored a range of contingency tables starting with the

2 or 3 most common subtypes and subsequently including less

frequent subtypes one by one. We computed the mean of the

standardized Pearson residuals for different categories of cells and

distinguished cells corresponding to infections by the same subtype,

cells corresponding to infections by different subtypes belonging to

the same clade and cells corresponding to infections by subtypes

belonging to different clades. Similar tests were done for the HA

clade and group levels, and for NA subtypes.

Patterns of infection detection probabilities over

time. We built statistical models to address variation in the

probability of a virus belonging to a given HA clade, conditional

on detection and identification. For these analyses, all records of

infections for which the virus subtype was known were considered,

thus including all records of detections likely to belong to the same

infection. One distinct analysis was performed for each clade (H1,

H3, H11, H7 and H9 Clades). We used the mgcv package in R for

fitting generalized additive models (GAMs) with the possibility of

including non-parametric smoothers [61]. The dependent variable

was binary: membership of the subtype to the focal clade or mem-

bership to another clade, and thus had a binomial distribution

(with number of trials equaling one) and a logit link function. This

model was used to depict the relationship between the probability

parameter of the binomial distribution and explanatory variables.

The explanatory variables considered were: (1) year (categorical),

(2) whether or not a virus belonging to the same clade had pre-

viously been detected in the same individual (binary), and (3)

whether or not a virus belonging to a different clade had pre-

viously been detected in the same individual (binary). Additionally,

non-parametric smooth functions were included to address the

influence of (1) date (seasonal variation) (2) the number of days

since the last detection in the same individual of a virus belonging

to the same clade, and (3) the number of days since the last

detection in the same individual of a virus belonging to a different

clade. The GAMs were fitted using penalized likelihood maximi-

zation. The smooth terms were thin plate regression splines with

smoothing parameters estimated by minimization of the general-

ized cross validation criterion. For each clade, a set of models

including distinct combinations of the explanatory variables and

smooth functions described above were fitted to the data. No

interaction between parameters was included in these models, in

order to avoid over-parametrization. Selection within each such

set of the most appropriate model(s) was performed using the

Akaike Information Criterion (AIC), whereby AIC models with

the lowest scores were considered to provide the best description of

the data.

Supporting Information

Figure S1 Distribution of days between different de-
tected IAV infections.

(TIF)

Figure S2 Distribution of p-values over randomly
generated independent subsamples for the long lag ($7
days between isolation) and common subtypes. (A) p-

value distribution of MC Fisher’s test at the level of subtype; (B) p-

value distribution of Fisher’s test at the level of clade; (C) p-value

distribution of MC Fisher’s test at the level of group.

(TIF)
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Figure S3 Prevalence estimate of H1 Clade and H3
Clade viruses as a function of time. The line gives a daily

prevalence estimate for H1 Clade (A) and H3 Clade (B) viruses

(with 95% confidence limits in dashed lines) calculated from the

total study period 2002–2008. The distribution of data points is

presented as rug plots along the x-axis.

(TIF)

Figure S4 IAV detection probability for H7, H9 and H11
Clades as a function of time and previously detected
infections. The x-axis represents time in days since first detec-

tion of a virus. The y-axis depicts the probability of detection.

Black continuous line represents the change over time in

probability (95% CI with dashed lines). The horizontal blue line

is the probability of detection of an infection with a virus from a

specific clade for naı̈ve birds (95% CI with dashed lines). The

distribution of data points is presented as rug plots along the x-

axis. Detection probabilities for H7 (A), H9 (C) and H11 (E)

Clades for individuals that have previously experienced an initial

infection with a virus from the same clade. Detection probabilities

for H7 (B), H9 (D) and H11 (F) Clades for individuals that have

previously experienced an infection with a virus from another

clade.

(TIF)

Figure S5 Prevalence estimate of H7 Clade, H9 Clade
and H11 Clade viruses as a function of time. The line gives

a daily prevalence estimate for H7 Clade (A), H9 Clade (B) and (C)

H11 Clade viruses (with 95% confidence limits in hatched lines)

calculated from the total study period 2002–2008. The distribution

of data points is presented as rug plots along the x-axis.

(TIF)

Table S1 Contingency table for all HA re-infection
transitions, rows first infection, columns later infection.

(DOCX)

Table S2 Contingency table for phylogenetic HA group
independence.

(DOCX)

Table S3 Contingency table for phylogenetic HA clade
independence.

(DOCX)

Table S4 Contingency table for HA re-infections (short
lag).

(DOCX)

Table S5 Contingency table for phylogenetic HA clade
independence (short lag).

(DOCX)

Table S6 Contingency table for phylogenetic HA group
independence (short lag).

(DOCX)

Table S7 Contingency table for phylogenetic HA group
independence (long lag, all subtypes).

(DOCX)

Table S8 Summary table of the exploration of contin-
gency tables at the HA subtype level for the long lag.

(DOC)

Table S9 Summary table of the exploration of the
contingency tables at the HA clade level for the long
lag.

(DOC)

Table S10 Summary table of the exploration of contin-
gency tables at the HA subtype level for the whole
dataset.

(DOC)

Table S11 Summary table of the exploration of contin-
gency tables at the HA subtype level for the short lag.

(DOC)

Table S12 Summary table of the exploration of the
contingency tables at the HA clade level for the whole
dataset.

(DOC)

Table S13 Summary table of the exploration of the
contingency tables at the HA clade level for the short lag.

(DOC)

Table S14 Alternative models for depicting the proba-
bility that a detected and identified virus belong to a
focal clade. Model number one includes all the candidate

explanatory variables. In each of models 2–7 one or two

explanatory variables are removed from model number one.

The AICs of selected models are highlighted in bold.

(DOC)

Table S15 Summary table of the exploration of the
contingency tables at the NA subtype level for the whole
dataset.

(DOC)

Table S16 Summary table of the exploration of the
contingency tables at the NA subtype level for the short
lag.

(DOC)

Table S17 Summary table of the exploration of the
contingency tables at the NA subtype level for the long
lag.

(DOC)

Table S18 Summary table of the exploration of the
contingency tables at the NA clade level for the whole
dataset.

(DOC)

Table S19 Summary table of the exploration of the
contingency tables at the NA clade level for the short lag.

(DOC)

Table S20 Summary table of the exploration of the
contingency tables at the NA clade level for the long lag.

(DOC)
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